Nasal airflow rate affects the sensitivity and pattern of glomerular odorant responses in the mouse olfactory bulb.

نویسندگان

  • Yuki Oka
  • Yoshiki Takai
  • Kazushige Touhara
چکیده

Sniffing is a characteristic odor sampling behavior in various mammalian species, which is associated with an increase in both nasal airflow rate and breathing frequency. Although the importance of sniffing in olfaction is well recognized, it has been challenging to separate the effect of airflow rate and sniffing frequency in vivo. In this study, we examined the individual effects of airflow rate and frequency on odorant responses of glomeruli in the mouse olfactory bulb (OB) using calcium imaging techniques and an artificial sniffing system. We found that nasal airflow rate, but not sniffing frequency, affected the apparent glomerular responses. When measured using OB imaging, apparent sensitivity for some of the odorants was significantly greater at the high nasal flow rates, while other odorants exhibited the opposite effect. In a single defined glomerulus, the sensitivity shift caused by changes in flow rate varied between odorants, suggesting that the flow rate effect is dependent on the chemical properties of an odorant rather than on the specific characteristics of the expressed olfactory receptor. Using natural flavors containing a variety of odorants, different glomerular activation patterns were observed between breathing and sniffing condition, likely due to odorant-dependent flow rate effects. Our results provide important information on in vivo odorant recognition and suggest that odor representation in the OB is not fixed but rather varies significantly depending on the respiratory state.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Odorant Receptor Map in the Mouse Olfactory Bulb: In Vivo Sensitivity and Specificity of Receptor-Defined Glomeruli

Odorant identity is represented in the olfactory bulb (OB) by the glomerular activity pattern, which reflects a combination of activated odorant receptors (ORs) in the olfactory epithelium. To elucidate this neuronal circuit at the molecular level, we established a functional OR identification strategy based on glomerular activity by combining in vivo Ca(2+) imaging, retrograde dye labeling, an...

متن کامل

Enzymatic conversion of odorants in nasal mucus affects olfactory glomerular activation patterns and odor perception.

Odor information is decoded by a combination of odorant receptors, and thus transformed into discrete spatial patterns of olfactory glomerular activity. It has been found, however, that for some odorants, there are differences between the ligand specificity of an odorant receptor in vitro and its corresponding glomerulus in vivo. These observations led us to hypothesize that there exist prerece...

متن کامل

Odorant response properties of convergent olfactory receptor neurons.

Information about odorant stimuli is thought to be represented in spatial and temporal patterns of activity across neurons in the olfactory epithelium and the olfactory bulb (OB). Previous studies suggest that olfactory receptor neurons (ORNs) distributed in the nasal cavity project to localized regions in the glomerular layer of the OB. However, the functional significance of this convergence ...

متن کامل

Faster, Deeper, Better: The Impact of Sniffing Modulation on Bulbar Olfactory Processing

A key feature of mammalian olfactory perception is that sensory input is intimately related to respiration. Different authors have considered respiratory dynamics not only as a simple vector for odor molecules but also as an integral part of olfactory perception. Thus, rats adapt their sniffing strategy, both in frequency and flow rate, when performing odor-related tasks. The question of how fr...

متن کامل

Sniffing and spatiotemporal coding in olfaction.

The act of sniffing increases the air velocity and changes the duration of airflow in the nose. It is not yet clear how these changes interact with the intrinsic timing within the olfactory bulb, but this is a matter of current research activity. An action of sniffing in generating a high velocity that alters the sorption of odorants onto the lining of the nasal cavity is expected from the esta...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 29 39  شماره 

صفحات  -

تاریخ انتشار 2009